Search results

1 – 10 of 315
Article
Publication date: 1 March 2009

E.S. Zainudin and S.M. Sapuan

Specific responses of thermoplastic components are required when they are subjected to impact conditions to minimize the damage in human body. Hardness property gives material…

Abstract

Specific responses of thermoplastic components are required when they are subjected to impact conditions to minimize the damage in human body. Hardness property gives material, high resistance to various kinds of shape change when force is applied. In this study, mechanical properties such as impact strength and hardness of banana pseudo‐stem (BPS) unplastisized polyvinyl chloride (UPVC) composites were determined. It was found that fibre loading of BPS filler could enhance the properties of the impact strength and hardness of BPS/UPVC composites. The results on the addition of acrylic modifier to the composites have been discussed.

Details

Multidiscipline Modeling in Materials and Structures, vol. 5 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 23 May 2023

I. Aliyu, S.M. Sapuan, E.S. Zainudin, M.Y.M. Zuhri and Y. Ridwan

The conflicting results on the corrosion characteristics of aluminium matrix composites reinforced with agrarian waste have stimulated an investigation on the hardness and…

Abstract

Purpose

The conflicting results on the corrosion characteristics of aluminium matrix composites reinforced with agrarian waste have stimulated an investigation on the hardness and corrosion rate of sugar palm fibre ash (SPFA) reinforced LM26 Al/alloy composite by varying the SPFA from 0 to 10 wt% in an interval of 2 wt%. This paper aims to discuss the aforementioned issue.

Design/methodology/approach

The composites were produced via stir-casting and the hardness was determined using a Vickers hardness testing machine, corrosion rate was examined through the weight loss method by immersion in 0.5, 1.0 and 1.5 M hydrochloric acid (HCl) at temperatures of 303, 318, and 333 K for the maximum duration of 120 h. The morphological study was conducted using a scanning electron microscope (SEM) on the samples before and after immersion in HCl.

Findings

The incorporation of SPFA improved the hardness of the alloy from 58.22 to 93.62 VH after 10 wt% addition. The corrosion rate increases with increased content of SPFA, the concentration of HCl and temperature. The least corrosion rate of 0.0272 mpy was observed for the LM26 Al alloy in 0.5 M after 24 h while the highest corrosion rate of 0.8511 mpy was recorded for LM26 Al/10 wt% SPFA in 1.5 M HCl acid after 120 h. The SEM image of corroded samples revealed an increased number of pits with increased SPFA content.

Research limitations/implications

The work is limited to SPFA up to 10 wt% as reinforcement in LM26 Al alloy, the use of HCl as corrosion medium, temperatures in the range of 303–333 K, and a weight loss method were used to evaluate the corrosion rate.

Originality/value

The corrosion rate was determined for LM26 Al/SPFA composites with various amounts of SPFA in 0.5, 1.0 and 1.5 M HCl at 303, 318 and 333 K and compared with the matrix alloy.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 March 2006

S.S.S. Imihezri, S.M. Sapuan, S. Sulaiman, M.M. Hamdan and E.S. Zainudin

This paper presents the simulation results of a glass fiber reinforced PA 6,6 composite automotive clutch pedal. The analysis is carried out using Moldflow Plastics Insight (MPI…

Abstract

This paper presents the simulation results of a glass fiber reinforced PA 6,6 composite automotive clutch pedal. The analysis is carried out using Moldflow Plastics Insight (MPI) software to investigate the effects of increasing gate number from 1 to 2 on temperature and pressure. The results of temperature show that for single gate, the temperature was 291.3 °C and for double gate was 292.3 °C. Double gates mold induce higher temperature due to longer runner length. Both designs revealed different hot spots locations indicating probable areas of excess shear heating. The results of pressure (end of fill), for the single gate it was 61.31 MPa and for double gate was 60.73 MPa. Double gates mold reduce the required injection pressure as well as pressure variation, hence a lower volumetric shrinkage. Lower injection pressure produces lower shear rate and shear stress level.

Details

Multidiscipline Modeling in Materials and Structures, vol. 2 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 2 August 2019

Giridharan R., Raatan V.S. and Jenarthanan M.P.

The purpose of this paper is to study the effects of fiber length and content on properties of E-glass and bamboo fiber reinforced epoxy resin matrices. Experiments are carried…

Abstract

Purpose

The purpose of this paper is to study the effects of fiber length and content on properties of E-glass and bamboo fiber reinforced epoxy resin matrices. Experiments are carried out as per ASTM standards to find the mechanical properties. Further, fractured surface of the specimen is subjected to morphological study.

Design/methodology/approach

Composite samples were prepared according to ASTM standards and were subjected to tensile and flexural loads. The fractured surfaces of the specimens were examined directly under scanning electron microscope.

Findings

From the experiment, it was found that the main factors that influence the properties of composite are fiber length and content. The optimum fiber length and weight ratio are 15 mm and 16 percent, respectively, for bamboo fiber/epoxy composite. Hence, the prediction of optimum fiber length and content becomes important, so that composite can be prepared with best mechanical properties. The investigation revealed the suitability of bamboo fiber as an effective reinforcement in epoxy matrix.

Practical implications

As bamboo fibers are biodegradable, recyclable, light weight and so on, their applications are numerous. They are widely used in automotive components, aerospace parts, sporting goods and building industry. With this scenario, the obtained result of bamboo fiber reinforced composites is not ignorable and could be of potential use, since it leads to harnessing of available natural fibers and their composites rather than synthetic fibers.

Originality/value

This work enlists the effect of fiber length and fiber content on tensile and flexural properties of bamboo fiber/epoxy composite, which has not been attempted so far.

Details

Multidiscipline Modeling in Materials and Structures, vol. 15 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 4 October 2017

M.R.M. Huzaifah, S.M. Sapuan, Z. Leman, M.R. Ishak and M.A. Maleque

The purpose of this paper is to present the review of natural fibre composites as well as a specific type of fibre, i.e., sugar palm fibre and its composites.

Abstract

Purpose

The purpose of this paper is to present the review of natural fibre composites as well as a specific type of fibre, i.e., sugar palm fibre and its composites.

Design/methodology/approach

The approach of this review paper is to present previous work on natural fibres and their composites. Then a review of several important aspects such as history, origin, botanic description, distribution, application and characterisation of sugar palm tree, and its fibre is presented. Finally a review of properties and characterisation of sugar palm composites is presented.

Findings

Findings of this review include the potential application of natural fibres and their composites for engineering application, the use of sugar palm and its fibres, as well as the suitability of sugar palm composites in engineering application after conducting review of their performance and characterisation.

Originality/value

The value of this review is to highlight the potential of natural fibres, natural fibre composites, sugar palm, sugar palm fibres and sugar palm composites as materials for engineering applications.

Details

Multidiscipline Modeling in Materials and Structures, vol. 13 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 22 June 2010

C. Subramanian and S. Senthilvelan

The purpose of this paper is to understand the influence of reinforced fiber length over material‐plastic energy of deformation, clogging, crystallinity, and correlates with the…

1225

Abstract

Purpose

The purpose of this paper is to understand the influence of reinforced fiber length over material‐plastic energy of deformation, clogging, crystallinity, and correlates with the friction and wear behavior of polypropylene (PP) composites under multi‐pass abrasive condition. Also to identify wear mechanisms of glass fiber reinforced PP materials under various abrasive grit sizes and normal loads.

Design/methodology/approach

Multi‐pass abrasive wear tests were performed for unreinforced, short, and long glass fiber reinforced PP (LFPP) on a pin on disc machine under three different normal loads and two different abrasive grit sizes for a constant sliding velocity. Measured wear volume was correlated with the plastic energy of deformation by carrying out a constant load indentation test using servo hydraulic fatigue test system. Clogging behavior of test materials was examined with the aid of online wear measurement and wear morphology. Test materials crystallinity was estimated with the aid of X‐ray diffraction investigation and correlated with abrasive wear performance.

Findings

Fiber reinforcement in a PP material is found to improve the plastic deformation energy and crystallinity which results in improved abrasive resistance of the material. Increase in reinforced fiber length is found to improve the material cohesive energy and hence the wear resistance. Reinforcement is found to alter the material clogging behavior under multi‐pass condition. Fiber reinforcement is found to reduce the material coefficient of friction, and increase in reinforced fiber length further reduces the frictional coefficient.

Research limitations/implications

Friction wear tests using pin on disc equipment is carried out in the present investigation. However, in practice, part geometry may not be always equivalent to simple pin on disc configuration.

Practical implications

The paper's investigation results could help to improve the utilization of LFPP material in many structural applications.

Originality/value

Influence of reinforced fiber length over multi‐pass abrasive wear performance of thermoplastic material, and online wear measurement to substantiate clogging behavior is unique in the present multi‐pass abrasive investigation.

Details

Industrial Lubrication and Tribology, vol. 62 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 26 July 2021

Md. Zahid Hasan and Rubel Ahammed

The Purpose of this research is to initiate the “Fourth Industrial Revolution” by using the Internet of things (IoT), which can be applied to flammable gas condition monitoring…

Abstract

Purpose

The Purpose of this research is to initiate the “Fourth Industrial Revolution” by using the Internet of things (IoT), which can be applied to flammable gas condition monitoring and detection of gas leakage and activate fire extinguisher in case of fire accidents. Liquefied petroleum gas (LPG) leakage and explosions cause many injuries and death each year. By developing an automated and remote LPG ppm condition monitoring and fire extinguisher activation system with the help of a cyber-physical system, the rate of accidents and injuries can be reduced to a significant amount.

Design/methodology/approach

The IoT enabled the sensors to transmit LPG concentration value reading to a mobile app or cloud server and control actuators by connecting all in the same network. In case of a fire accident, the solenoid valve automatically or can be activated by an android application manually, which will be pre-installed in mobile phones. Another advantage of this system is that the gas cylinder or flammable particle source can be closed by closing the solenoid valves attached to their outlets. The first challenge of Industry 4.0 is to develop a cyber-physical system where all physical entities can be monitored and controlled over the internet or another way remotely or from a single point.

Findings

This fire extinguisher system can be used everywhere and in all types of firefighting because all types of fire extinguishers are commercially available in cylinders where solenoid valves can be used instead of conventional valves. This system will reduce human effort in the fire safety system and reduce the number of losses owing to fire accidents by taking all actions automatically and from a safe distance. The reliability analysis of this system indicated that the working condition for the best outcome is 20–35°C and the baud rate of the controller should be 11.5 kHz.

Originality/value

The study of pieces of the literature summarizes that this work is unique in terms of the application of Industry 4.0 in the fire safety system and reliability analysis of this system helped to determine the operating condition for the best performance of this system. Some LPG condition monitoring system was developed using IoT before but had many limitations such as working capability during load shading or emergency cases.

Details

World Journal of Engineering, vol. 18 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 9 October 2023

Goutam Kumar Jana, Sumit Bera, Ribhu Maity, Tithi Maity, Arjun Mahato, Shibayan Roy, Hemakesh Mohapatra and Bidhan Chandra Samanta

The manufacture of polymer composites with a lower environmental footprint requires incorporation of sustainably sourced components. In addition, the incorporation of novel…

Abstract

Purpose

The manufacture of polymer composites with a lower environmental footprint requires incorporation of sustainably sourced components. In addition, the incorporation of novel components should not compromise the material properties. The purpose of this paper is to demonstrate the use of a synthetic amine functional toluidine acetaldehyde condensate (AFTAC) as a modifier for fiber-reinforced epoxy composites. One of the fiber components was sourced from agricultural byproducts, and glass fiber was used as the fiber component for comparison.

Design/methodology/approach

The AFTAC condensate was synthesized via an acid-catalyzed reaction between o-toluidine and acetaldehyde. To demonstrate its efficacy as a toughening agent for diglycidyl ether bisphenol A resin composites and for the comparison of reinforcing materials of interest, composites were fabricated using a natural fiber (mat stick) and a synthetic glass fiber as the reinforcing material. A matched metal die technique was used to fabricate the composites. Composites were prepared and their mechanical and thermal properties were evaluated.

Findings

The inclusion of AFTAC led to an improvement in the mechanical strengths of these composites without any significant deterioration of the thermal stability. It was also observed that the fracture strengths for mat stick fiber-reinforced composites were lower than that of glass fiber-reinforced composites.

Originality/value

To the best of the authors’ knowledge, the use of the AFTAC modifier as well as incorporation of mat stick fibers in epoxy composites has not been demonstrated previously.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 15 April 2024

Goksel Saracoglu, Serap Kiriş, Sezer Çoban, Muharrem Karaaslan, Tolga Depci and Emin Bayraktar

The aim of this study is to determine the fracture behavior of wool felt and fabric based epoxy composites and their responses to electromagnetic waves.

18

Abstract

Purpose

The aim of this study is to determine the fracture behavior of wool felt and fabric based epoxy composites and their responses to electromagnetic waves.

Design/methodology/approach

Notched and unnotched tensile tests of composites made of wool only and hybridized with a glass fiber layer were carried out, and fracture behavior and toughness at macro scale were determined. They were exposed to electromagnetic waves between 8 and 18 GHz frequencies using two horn antennas.

Findings

The keratin and lignin layer on the surface of the wool felt caused lower values to be obtained compared to the mechanical values given by pure epoxy. However, the use of wool felt in the symmetry layer of the laminated composite material provided higher mechanical values than the composite with glass fiber in the symmetry layer due to the mechanical interlocking it created. The use of wool in fabric form resulted in an increase in the modulus of elasticity, but no change in fracture toughness was observed. As a result of the electromagnetic analysis, it was also seen in the electromagnetic analysis that the transmittance of the materials was high, and the reflectance was low throughout the applied frequency range. Hence, it was concluded that all of the manufactured materials could be used as radome material over a wide band.

Practical implications

Sheep wool is an easy-to-supply and low-cost material. In this paper, it is presented that sheep wool can be evaluated as a biocomposite material and used for radome applications.

Originality/value

The combined evaluation of felt and fabric forms of a natural and inexpensive reinforcing element such as sheep wool and the combined evaluation of fracture mechanics and electromagnetic absorption properties will contribute to the evaluation of biocomposites in aviation.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 10 February 2022

Nivedita Jha, Renato Pereira and Siddharth Misra

The purpose of this study is to provide human resource (HR) practitioners of multinational companies aspiring to invest in these two countries with guidelines for attaining…

Abstract

Purpose

The purpose of this study is to provide human resource (HR) practitioners of multinational companies aspiring to invest in these two countries with guidelines for attaining organizational effectiveness through people.

Design/methodology/approach

This study develops and tests a multiple criteria decision-making model with data collected in the banking sectors of India and Mozambique. It compares the job engagement, team building and innovation strategy preferences of Indian personnel with those of Mozambican employees.

Findings

The findings of the study reveal the differences in the perceptions of the respondents of both countries regarding the importance of the strategies for organizational effectiveness.

Research limitations/implications

Despite several contributions, the study has certain limitations too. Although utmost care was taken to avoid the issue of common method variance, the cross-sectional self-reported design of the study might be adversely affected by common method bias (MacKenzie and Podsakoff, 2012). Hence, future research might be conducted using different designs, such as diary studies or longitudinal studies. Future research might also be conducted making use of organizational productivity case studies to demonstrate the practicability of customizing the HR strategies using the multi-attribute decision-making approach.

Practical implications

This body of work is an addition to the existing literature on cross-national studies in the field of HR management (HRM) and adds to the limited literature on HRM in the least developed countries. The study is designed to provide guidelines for the HR practitioners of multi-national companies in these two countries to help them achieve enhanced organizational effectiveness. This should be of particular interest to the HR managers of the Indian companies aspiring to invest in Mozambique.

Originality/value

Research in the area of HRM is mainly limited to the developed and developing nations, with very few studies centering on emerging economies. While most cross-national studies on organizational effectiveness are also largely focused on developed and developing nations, this study is unusual, in that its focus is on a fast-developing nation (India) and an emerging economy (Mozambique).

Details

Industrial and Commercial Training, vol. 54 no. 2
Type: Research Article
ISSN: 0019-7858

Keywords

1 – 10 of 315